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Nonlinear interactions of gravity-capillary waves : 
Lagrangian theory and effects on the spectrum 
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A weakly nonlinear inviscid theory describing the interactions within a continuous 
spectrum of gravity-capillary waves is developed. The theory is based on the 
principle of least action and uses a Lagrangian in wavenumber-time space. Advan- 
tages of this approach compared to the method of Valenzuela & Laing (1972) are much 
simplified mathematics and final equations and validity on a longer timescale. It is 
shown that much of the development of the spectrum under the influence of nonlinear 
terms can be understood without actually having to integrate the equations. To this 
end multiwave space, a new concept comparable with phase space, is introduced. 
Using multiwave space the magnitude of the nonlinear transfer is estimated and it 
is shown how the energy goes through the spectrum. Also it is predicted that at fixed 
wavenumbers, the smallest being 520 m-l, finite peaks will arise in the spectrum. This 
is confirmed by numerical integrations. From the integrations it is also deduced that 
nonlinear interactions are at least as important to the development of the spectrum 
as wind growth. Finally i t  is shown numerically that the near-Gaussian statistics of 
the sea surface are unaffected by nonlinear interactions. 

1. Introduction 
Remote sensing of our seas, which has really taken flight over the last decade, gives 

a lot of information which the scientific world still has difficulty in interpreting 
correctly. One example of this is the images of bottom topography of shallow waters 
taken by microwave radar. An essential link in the imaging process is formed by 
gravity-capillary waves on the ocean surface. One of the problems in explaining 
bottom-topography images is that knowledge about the behaviour of these wavelets 
is incomplete, while part of what is known is still too intricate to be handled in a 
compound model (Phillips 1984). 

This paper deals with gravity-capillary waves. I shall first give a brief review of 
the present level of our knowledge of them. This is done most easily in the context 
of the energy-balance equation (Willebrand 1975) : 

Here A(k ,x , t )  denotes the action density, defined by A = E / w ,  E being the local 
energy density and w the intrinsic frequency. Also, B is the apparent frequency, U 
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the surface current and S stands for source or sink, respectively acting due to wind, 
viscosity, nonlinear interactions and breaking events. Actually all sources 
are coupled, but as an approximation they are dealt with separately (Komen, 
Hasselmann & Hasselmann 1984). 

The damping due to viscosity is well known: Svisc = -4vk2A (Phillips 1977, p. 52). 
The equations governing the energy input by wind are also familiar (Miles 1962; 
Valenzuela 1976), but it is only recently that a quick and accurate way to solve them 
has been found (van Gastel, Janssen & Komen 1985). We know very little of the 
causes and frequency of breaking of the waves (Phillips 1984) although Banner & 
Phillips (1974) have made some theoretical predictions. The nonlinear interactions in 
a spectrum of gravity-capillary waves have been calculated by Valenzuela & Laing 
(1972). A drawback of their method, which is based on Hasselmann’s (1962) 
perturbation analysis, is that the resulting expressions for the interaction coefficients 
are complicated and cannot be understood physically ; also the numerical computa- 
tions necessary for quantitative results are delicate and lengthy. This is probably one 
of the reasons why the nonlinear interactions have never yet been included when 
solving the energy balance. As Longuet-Higgins (1976) puts it: ‘there is obviously 
a need for a much simpler approach, more amenable to physical interpretation’. 

The aim of this paper is to increase our knowledge of the nonlinear interactions 
in a continuous spectrum of gravity-capillary waves to such a level that an accurate 
description of these interactions can be used when solving the energy balance ( 1 )  for 
this part of the spectrum. This work can be divided into three steps: (i) mathematical 
derivation of the interaction equations; (ii) construction of a physical image of how 
the wavenumbers are related to each other by the resonance conditions; and (iii) 
study of the symmetries present within a triad. Point (ii) helps to make interpreta- 
tions of numerical integrations possible and greatly increases their efficiency. 

Analytical expressions for the nonlinear interactions in a continuous spectrum of 
gravity-capillary waves are obtained as the Euler-Lagrange equations for the 
Lagrangian in wavenumber-time space. An expansion is made in powers of the wave 
steepness. This method can be seen as a generalization to the continuous case of the 
method of Simmons (1969) or of that described by Whitham (1967) for resonant 
interactions. The advantages of using a Lagrangian or Hamiltonian formalism in this 
case are simpler mathematics, simpler final expressions and validity on a longer 
timescale. These advantages have been pointed out frequently in recent years (Miles 
& Salmon 1985; Henyey 1983). 

To achieve point (ii) I introduce a new concept : the multiplet-wavevector space, 
multiwave space for short (a multiplet is a set of waves that together fulfill the 
resonance conditions). This concept can be compared with phase space in classical 
mechanics. Phase space tells us at  a glance how physical space is interconnected by 
trajectories. Similarly, in multiwave space we see the interconnections in wavevector 
space due to the nonlinear interactions. The multiwave space is constructed explicitly 
for triad resonances between parallel gravity-capillary waves. In this case it is 
two-dimensional. 

Point (iii), the use of symmetries, is straightforward. It is comparable with the way 
Hasselmann & Hasselmann (1981) use symmetries for four-wave interactions. 

One of the gains of using multiwave space and symmetries is that resonance 
conditions and interaction coefficients need be solved only for part of the wavevector 
space, in the present case only for k < (g/2T)t. Another gain is that it allows for a 
natural construction of a grid for numerical calculations, implying high accuracy. 
This grid follows the paths of the energy through the spectrum. 



Nonlinear interactions of gravity-capillary waves 50 1 

An energy balance containing nonlinear interactions is actually integrated. As 
initial states the spectra measured by Liu & Lin (1982) are used. A surprising 
phenomenon is encountered: the existence of preferred wavelengths, i.e. peaks in the 
energy spectrum. I explain the occurrence of these peaks using multiwave space. 

As a sideline the issue of near Gaussianity of the sea surface is considered. The 
Gaussian approximation is essential to the weakly nonlinear theory underlying 
multiplet interactions. Davidson (1972) showed analytically for all processes domi- 
nated by three- or four-wave interactions that, if the initial sea surface is near 
Gaussian, the third cumulant, commonly related to phase-locking, goes to a constant. 
I show numerically that, for the cases considered, this constant is small. 

2. The interaction equations 
The equations for the surface elevation 5 are derived using the principle of least 

action. Nonlinear effects are included up to first order. The surface elevation is 
supposed to consist of a continuum of free gravity-capillary waves. Viscosity is 
neglected. 

The action J can be written as 

J = SJLdxdt.  (2) 

For water waves the Lagrangian L is a function of the elevation c and the potential 
$. For infinitely deep water it  is given by (Simmons 1969; Luke 1967) 

L = + T[(  1 + Oc*Oc):- 11 + (iV$ *V$+ 4) dz. (3) 

Here g is the acceleration due to gravity and T the surface tension divided by the 
density. The derivatives are defined as follows: 

The Lagrangian as presented in (3) is a function of horizontal space and time. 
To be able to perform the integration in the Lagrangian I apply a Fourier transform 
and substitute the dependence on the vertical for each mode: 

27c 

27c 

k = Ikl. I 

A new Lagrangian depending on wavenumber and time is defined by 

J = SJLdkdt .  
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It can be given explicitly by assuming the waves to be of small, though finite 
amplitude, or, equivalently 

Vk, t :  [(k, t )  = &(k, t ) ,  $(k, t )  = ~ $ ' ( k ,  t ) ,  p' = 0(1), (7) 
where E is a small parameter proportional to the wave steepness. This assumption 
will be checked in $5. The primes will be dropped in the following. E being small 
enables the Lagrangian z to be expanded in powers of E .  Using the identity 

+ k"&) @')I 6(k - k' - k") dk' dk", 

$(k) = - (g+k2T) -k'k"+k'k")$(k')$(k") 

IS ((k) = ~ $ + E G  [(kk'+kk')$(k')g(&") 

this expansion becomes (here and in the following the dependence on t of all functions 
is not stated explicitly when no confusion can arise) 

Qk t )  = s2[i(g + k2T) C(k) PC - k) + ik$W $( - k) + $(k) 5( - Wl 

+$in: j j [ ( -kk '+kk ' )$ (k )  $(k') Q(k") 

+kj(k)g(k')  @")I 6(k+k'+k")dk'dk"+O(e4). (9) 

The principle of least action states that physical realizations of the system are given 
by 6 J  = 0. This condition can be transformed into a condition on the Lagrangian, 
as in the familiar EulePLagrange equations. To illustrate the method I use a 
simplified Lagrangian E ;  for the actual Lagrangian given by (9) the procedure is 
analogous. Let E be a function of $(k) and $( -k). Then 

6J = I E[$ (k) + Eu(k), $( - k) + ."u( - k)] dk - E($(k), $( - k)) dk. 

Here E is a small parameter and u is a smooth function of k disappearing at the 
integration boundaries. Continuing : 

' (10) 

Applying this procedure to the resent Lagrangian 
are two independent functions [and $. 

yields two equations as there 

Using the substitution k+-k these equations can be written as 
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from (10) and These functions are the normal modes of the system. By eliminating 
transforming to these normal modes according to 

1 (12) 
f,(k, t )  = a+( t )  Eio(k)t+a-(t) cio(k)t, 

&k, t )  = iw( k )  a+ ( t )  - iw( k )  a- ( t )  e-iw(k) t ,  J 
equations for the amplitudes of the modes are derived which are uncoupled at lowest 
order : 

1 - kk"  + k'k" 
w;"(w:" + w i . )  + k'k" o~,W:.+2(w')a+2(o")~+20~.o:"  

kk" + kk" 
kk" 

- 

a', u a'' u" &w,-o;*-o:.) t }b(k-k'-k")dk'dk"+O(e'). (13) 

The following abbreviations are used : 
w = w(k),  

0, u = l  a+(k , t ) ,  u = 1 } (14) 
%={ -w, u = -  1 ' = { a - ( k ,  t )  , a=-1'  

In the summation u' and u" take on the values - 1 and + 1, Q can be both + 1 
and -1 .  

Equation (13) governs the nonlinear interactions of water waves. One piece of 
information has not been used so far and should be added : the elevation and potential 
are real functions. This leads to a relation between a+ and a_. There are two 
conventions for stating this relation (Hasselmann 1962; Davidson 1972). I will have 
use for both of them here; the first convention is 

and the other Qk: a + ( k )  = a?( - k ) ,  w1 = w ,  w-l = -0, 

The interactions described by (13) are cyclic in time except when the exponent 
vanishes, or, more explicitly, when 

k - k - k  = 0, W , - U ~ , - W >  = 0. (17) 
Waves fulfilling these conditions are called resonant waves. After a finite time the 
energy exchange between these waves will be far larger than between non-resonant 
waves. Note that resonant triads indeed exist for gravity-capillary waves (Simmons 
1969) in contrast to the case of purely gravity waves (Hasselmann 1962; Zakharov 
1968). 

An equation similar to (13) has also been derived by Zakharov (1968) using not 
the Lagrangian but the Hamiltonian. Using, like Zakharov, the first version of the 
reality conditions I have checked that for resonant waves the equations are equal. 
For non-resonant waves the expressions are not equal. This is because only the 
resonant interactions are a true physical measurable phenomenon, therefore only 
these are independent of the representation (Henyey t Pomphrey 1982). Mathe- 
matically speaking there is uniform convergence for the resonant interactions but not 
for the non-resonant ones. 
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Simmons (1969) has derived a nonlinear interaction equation for the case of the 
surface elevation consisting of just three resonant waves. This can be considered as 
a special case of the present analysis; in this case the amplitudes of the modes are 
given by 

(18) 

2 

a + ( k )  = 7~ Z ara(k-kr), 

a - (k )  = n: Z a:S(k+kr), 

r-o 
2 

r-0 

( ~ u l ( ~ l ) ~ , , z ( ~ 2 )  au3(k3)) = 3 ~ u l a z u 3 ~ ~ l ~ ~ 2 ~ ~ ~ ~ l + k 2 + ~ 3 ~ ~  

( ~ U l ( ~ l ) ~ , , ( ~ 2 ) ~ U J ( ~ 3 )  au4(k4)) = GUl(k1) GU3(k3)Wl+k2) w 3 + ~ , ) ~ u 1 u z ~ u 3 u 4  

+ Gu, (k,) Gu*(k2) W l  + k,) w 2  + k4) &TI us a,,* u4 

+ G,,,(k,) GUZ(k2) Wl + k4) w 2  + k3) LI( &*u3 

I 
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second of the reality conditions. The result is a kinetic equation that describes the 
change in G, due to nonlinear interactions : 

-G,= a { - 16Eu, I I P ( k ,  k', k") S(k- k' - k") S(w,-o; -w:) at 
k' 

( ~ + O ( E ) ) .  (20) 

The interaction coefficient J is equal to that in square brackets of (13). For resonant 
triads, the only ones contributing to the right-hand side of (20), J can be simplified 
to 

The index p + 1 should be interpreted modulo 3, and o can have either sign. Equation 
(20) as written above is only valid under the second convention for stating the reality 
condition; thus w,(k) = -w,( -k ) .  Only under this convention does the summation 
over cr' and g'' drop out of (20) and is the interaction coefficient J independent of 
cr, cr' and a". Physically the dropping out of the summation means that only waves 
travelling in the same direction can interact. This is caused by the frequency being 
a monotonously increasing function of wavenumber. The omission of higher-order 
corrections in the two-timescale expansion reduces the timescale on which (20) is valid 
to a scale of 1 / e .  This is an order of magnitude larger than the timescale on which 
Valenzuela & Laing's results can formally be proved to be valid. Using a simple 
Poincar6-type expansion they obtain validity on a scale of 1. 

The interaction equation (20) can be understood as follows. In the long run the 
change of the spectral density G, at certain wavenumber k is due only to interactions 
with those waves that satisfy the resonance conditions (17) in both frequency and 
wavenumber. Note that the Dirac delta functions in k and w are equivalent to the 
set of equations (17). The interactions within the different resonant triads can be 
regarded as independent; thus the total change is the sum of the changes due to the 
various triads. 

For each triad the strength of the interaction is proportional to the square of J .  
This J also appears as the interaction coefficient for the same resonant triad but in 
the discrete deterministic case as treated by Simmons (1969). One might say that the 
continuous stochastic result for the interactions follows from the discrete determin- 
istic one by summing over all resonant triads and by squaring the interaction 
coefficient. However, in the discrete case the interaction is proportional to the product 
of the amplitudes of the two waves complemental to k within the triad while in the 
continuous case a combination of all three correlation functions appears. 

To be able to check the assumption of near Gaussianity I also need an expression 
for the time development of the third cumulant. Note that near Gaussianity is defined 
by each cumulant being small compared with the foregoing one. Again following 
Davidson's (1972) work closely, this expression reads 
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Equation (22) shows immediately that for non-resonant waves ko,kl the third 
cumulant oscillates rapidly. Therefore it is only a t  resonant triads that the third 
cumulant is of interest. Comparing (20) and (22) shows that at resonant triads the 
integrand of (20) is proportional to the third cumulant minus its initial value. This 
is in accordance with the fact that no nonlinear transfer occurs in a Gaussian sea. 

Davidson (1972) has shown in general by entropy arguments that under influence 
of triad interactions G,(k) goes to a function for which the nonlinear transfer is zero : 

for all waves fulfilling 
w0 = w1+w2,  ko = kl+k2.  (24) 

Using the relation between the third cumulant and the transfer this implies that the 
third cumulant goes to a constant. In $6 it  will be checked that this result still holds 
for an energy balance that contains linear as well as nonlinear terms. 

A few more remarks concerning the interaction are relevant. First, the spectral 
densities G, are closely related to the energy E: 

Kinetic equations like (20), based on equations of the type (13), occur in many fields 
of physics, for- instance plasma physics (Davidson 1972). The expression for the 
interaction coefficient is specific to the problem a t  hand. It can be easily proved that 
equations of the type (20) guarantee conservation of energy and momentum 
(Davidson 1972, p. 254). Also, as 

k 
lim -J(k,  k’, - k’) = 0 ,  
k$O W ( k )  

the mean surface elevation remains zero for all times (Davidson 1972, p. 247). The 
scaling of the interactions follows directly from (20): when all the energies are 
multiplied by a constant factor h the interaction time TNL defined by E/(aE/at)  is 
reduced by a factor A :  

Finally, (20) is formally invalid at  k = (2g/T)t; that is a t  the wavenumber for which 
second harmonic resonance occurs. A t  this wavenumber a singularity arises in the 
transfer. However, the singularity is integrable and the energy spectrum itself 
remains finite (see $6). 

The present expression (20) for the energy transfer due to nonlinear interactions 
can be shown to be equal to that presented by Krasil’nikov & Pavlov (1973). The 
expression of Valenzuela & Laing (1972)’ when corrected for misprints as noticed by 
Holliday (1977), is equal to the aforementioned two except that it is a factor 2 smaller. 
This difference was noted by Plant (1979). 
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3. Multiwave space 
As an introduction to multiwave space I want to show how I went about 

ascertaining that I would find all resonant waves when I started this study. Here 
and in the following sections the analysis is restricted to parallel waves. The structure 
of the division of the resonant triads over wavenumber space depends only on the 
dispersion relation. Simmons (1969) has presented graphical methods to find the 
triads. I present here as figure 1 his figure showing the construction of a resonant triad. 
Table 1 shows several such triads. From figure 1 the following structure can be 
obtained. For a relatively long wave, almost in the gravity region, just one triad 
exists. Such a wave interacts with two very short waves of nearly equal wavenumber 
in the extreme capillary region. If the first wavenumber becomes larger, the two 
resonant wavenumbers decrease and move further apart. When the first wavenumber 
approaches ik,, where k, is defined by 

k, = ( 2 g / O ,  (27) 
the intermediate wavenumber approaches this same value from above and the largest 
wavenumber drops to k,, as illustrated by table 1 and figures 1 and 2. In  the case 
where the shortest wavenumber equals !jk, the intermediate and the shortest 
wavenumber are equal and can no longer be distinguished. This is the situation called 
second-harmonic resonance. If the first wavenumber is allowed to grow even further 
it is clear that the triads already found will be re-encountered, the ‘basic ’ wave being 
now the intermediate wave of a triad. A second triad for the ‘basic’ wave appears 
when k becomes larger than k,. The ‘ basic ’ wave is then the intermediate wave of 
one triad and the wave with largest wavenumber of the other triad. 

The description above implies the following : all resonant triads between gravity- 
capillary waves are encountered once and just once when a triad is calculated for each 
wave out of the set 0 < k < ik,. 
A formal proof of this statement is now given. 

Resonant triads are defined by (cf. (16) and (17)  and the discussion below (21)): 

(28) 

k - k ‘ - k  = 0, w , - - w ~ - - o ~  = 0, W , ( - k )  = -w,(k). 

Note, again, that different modes do not interact. In  the following I choose one mode, 
the reasoning is exactly the same for the other. The resonance conditions generate 
two sets of solutions: 
sum triads: k-k , -k ,  = 0, 

w--o,--w, = 0 

k+k, -k ,  = 0, 
w+w,--w, = 0 

(Vk,w(k) > 0 ) ,  

difference triads : 
(Vk,w(k) > 0). 

(29) 

For each set all wavevectors lie in one half of the plane ; a direct consequence of the 
non-interaction of different modes. One-dimensionally the wavevector can thus be 
substituted by its length. In the one-dimensional case the sum and difference triads 
are each defined by two equations for three unknowns. Thus for given k they each 
generate at most one solution. For every k a solution to the minus triad can be found ; 
this follows trivially from figure 1 .  The sum triad only exists for k 2 k, (Simmons 
1969). This already proves part of the statement, i.e. that for k < i k ,  exactly one 
resonant triad exists. The other part of the statement i s  that no new triads can be 
found once a triad for each k < i k ,  has been constructed. This comes about as follows. 

17 F L X  182 
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FIQURE 1. Graphical construction of resonant triads in the one-dimensional case. The dispersion 
relation o ( k )  is plotted with 0, as origin. To find the resonant wavenumbers for k, it is again plotted 
with 0, as origin. Intersection points between the two graphs determine resonant triads; the 
wavenumbers are given by the horizontal distances between the intersection point and 0, and 0, 
respectively. From Simmons (1969). 

k (m-l) k ,  (m-l) k,  
48.0 1280.9 1328.9 
53.8 1149.0 1202.8 
60.2 1031.5 1091.7 
67.4 926.7 994.1 
75.5 833.1 908.7 
84.6 749.6 834.2 
94.7 674.8 769.5 

106.1 607.6 713.8 
118.8 547.3 666.2 
133.1 492.9 626.0 
149.1 443.7 592.8 
167.0 399.1 566.1 
187.0 358.5 545.6 
209.4 321.7 531.1 
234.6 288.0 522.6 

TABLE 1 .  The resonant wavenumbers k, and k, as a function of k ;  an example of the type of grid 
used for numerical calculations (k, k, and k, being the grid points) 

A sum triad for any k is identical with the difference triads for both k,(k) and k,(k).  
Thus the sum triads give no new solutions. Next, in any difference triad for 
k > ik,, k, < ?jko holds, see Appendix A ;  thus indeed k > ik ,  gives no new triads. The 
last part of the statement to check is that two triads for different k ,  both satisfying 
k < k,, cannot be identical. This follows from the fact that for any k < ik,, k ,  > i k ,  
(Simmons 1969). 

Note that a by result of the above proof is that the sum and difference sets of 
solutions are equal. The difference between the conditions is not their total solution, 
thus not the triad, but the role k has in the triad. For a sum triad k is the largest 
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wavenumber while for a difference triad k is the smallest or intermediate 
wavenumber. 

All the foregoing information, and more, can be brought together in one graph, 
in the multipletiwavenumber space. The dimension M of the multiplet space is the 
dimension of the space of a branch of solutions to the resonance conditions. Thus for 
one- or two-dimensional triad interactions it is respectively one or three; for 
quadruplet interactions it is respectively two or five. As coordinates (ml, ..., mM) in 
this space I have chosen M components of wavevectors. These identify the multiplet 
completely. By systematically choosing these M components from the smallest 
wavevectors each multiplet has a unique representation. In  the present cask I have 
taken m = k,. Multiwave space is the direct product of multiplet and wavevector 
space. 

In two-dimensional triad-wavenumber space the solutions to the resonance 
conditions can be represented by 

k , + k , - k , = O ,  w,+w,--w~ = O ,  kE{k, ,k , ,kl} ,  

The function m(k,)  has been chosen for convenience. This mapping has been drawn 
in figure 2;  the scale for m is arbitrary. For k < k,, m ( k )  is single-valued, for k 2 k, 
double-valued. This bifurcation point plays an important role in the following 
analysis. 

Multiwave space can be used to find the resonant wavenumbers for a given 
wavenumber ko. This is done by searching for other wavenumbers for which (30) 
defines the same m, in other words, by searching for cross-points between m(ko) and 
the horizontal line through m(ko).  These wavenumbers will be called kl(ko).  

This process can be continued, for the set {kl(ko)}  a resonant set {k2(ko)} can be 
found, etc. This is done by drawing horizontal and vertical lines from (kt ,  m ( k t ) ) .  For 
definiteness elements k*-l will not be considered part of {k*}.  The union of these sets 
will be called K ( k o ) .  Within a set K(ko) all waves exchange energy. If there are waves 
k $ K ( k o )  these develop independently of this set. This makes it important, both to 
understanding nonlinear interactions and to performing accurate numerical calcul- 
ations, to find how these sets cover wavenumber space. 

To find this I restrict myself to a finite, though arbitrarily wide, interval of 
wavenumbers : 

k~ [kmin, kmaxl, 

where for convenience k,,, and kmin are resonant and k,,, is chosen such that 

3 n ~  N : kE{k"(k,)}. 

As an illustration of this point part of the set K(k , )  is drawn in figure 2. The following 
division of wavenumber space exists : consider 

A = (ik, ,  kol, 
n 

K ( k o )  = u {k*(ko)}. 
t-0 

THEOREM 1. For k,, k ,EA K ( k , )  n K(k , )  = 0 unless k,  = k,. 
THEOREM 2 .  U p E A  K ( k o )  = [kmin, k,,,]. 

17-2 
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100 200 I 300 400 5001 600 700 800 900 lo00 
$0 k0 

k (m-1) 

FIQURE 2. The resonant wavenumbers k ,  and k,  as a functi.on of k ,  see table 1. Different triads 
are indicated by different heights. Note that for k > ko every wave participates in two triads, for 
k < +ko, k is the smallest wavenumber of a triad. -, Smallest wavenumber of a triad k ;  ----, 
intermediate wavenumber of a triad k ,  ; -----, largest wavenumber of a triad k,. 
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Thus there exist infinitely many independent sets. Each set is uniquely represented 
by a wavenumber ko in the interval ik, < ko < k,. Proofs of theorems 1 and 2 are given 
in Appendix B. 

If one divides the interval between ik, and k, into, for instance, three finite regions 
this will generate three independent sets, together covering the whole wavenumber 
axis. This has been plotted in figure 3. By using the intervals so constructed as bins 
(the bands Akt around the representatives kt in a discretization of the wavenumber 
axis) in a numerical model the independence of these sets is maintained. Any other 
choice of bins would implicitly lay a link between the sets. Both options will be used 
in 995 and 6;  it  will be seen that this choice has important consequences. 

Multiwave space also makes possible estimates of the magnitude of the transfer 
of energy without doing any calculations. The transfer is roughly proportional to the 
slope am/ak. This proportionality is a direct result of the fact that, instantaneously, 
the total energy transfer is zero in a horizontal band Am of arbitrary width. This will 
be shown in the next paragraph. From the relation between transfer and slope 
combined with figure 2 it can be inferred that at k, the transfer has a singularity. 
The energy at k, will rise quickly until the integrand of (20), i.e. the third cumulant, 
is zero at this point. The energy level of other members of K(k,) will also be affected. 
Thus one expects to see peaks in the spectrum at kEK(k,), k 3 k, and dips at 
kcK(k,), k < k, (for the sign of the transfer I use results of the next sections). When 
an equilibrium is reached these dips and peaks will have disappeared again, because 
the equilibrium is smooth (cf. (23)). 

To prove that the total energy transfer is zero in a band [m,, m,] only the B = + 1 
mode need be considered. Then the following relation holds : 

The asterisk indicates that only those contributions should be considered for which 
m(k,) E [m,, m,], k, being the smallest resonant wavenumber. Using (20) gives 

w" k" 1 k' 
x S*(w, -w'-w")  -YG"G, --G, G' dk' dk" dk,. 

w 

Definition (30) states, among other things, that if k,-k,-k, = 0 and 
wg-wP-wq = 0 then m(k,) = m(k,) = m(k,). Therefore the integration boundaries 
can be substituted a s  follows: 

0" k" 1 &*(kg - k'- k") &*(wg -w' - w") [%GG" -Y k' G G ,  -- G, G dk' d k  dk,. 
(4 w 
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The rest of the argument follows Davidson's (1972) proof for the conservation of 
the total energy. Interchanging integration variables k,, - k' and - k" and relabelling 
the k's gives 

(01 - 0 s  - Wm) 

x J2(k, ,  k,, km) S*(kl- k, - k,) S*(W, - W ,  - w,) 

-dm =-- 

k 

% wm 
G ,  -"G, G, -&G, G,] dk, dk, dk,, 

where use of the symmetries of J has been made (see next section). Because 
w, - W ,  - w, equals zero for all solutions to the Dirac delta functions this gives 

j:: z d m  = 0, 

i.e. the total transfer in a band [ml,m2] is zero. Note that this result only holds 
instantaneously; in a finite time interval the transfers from the two triads for k 2 k, 
add up and energy conservation, for each band Am separately, is destroyed. In 95, 
(32) will be used to construct a numerical grid that guarantees high accuracy. 

4. Symmetries within the triads 
The transfer of energy from one choice of two waves out of a triad to the third 

member is simply related to that of any other choice of two waves out of the same 
triad to a third member. This type of symmetry in the transfer equations is related 
to weakly nonlinear interactions in general ; any three-wave interaction process would 
exhibit it. The following is essential. If k,, k,, k, form a resonant triad, according to 
k, - k,- k ,  = 0 ,  then 

and defining 

we also have 

J(k, ,  k,, km) = J(k8, -kmj k,) = J(km, k, ,  - k 8 ) ,  (33) 

k k' Ic" 
0, W,  w, 

R , ( k ; k ' k )  = -GiG: -,G:G,-,G,Gi 

R,(k,;  k8, km) = -Rc(ks;  -km, k,)  = -R,(k,;  k,, -kS)- (34) 

Thus in one dimension the set of transfer equations (20) can be simplified to the 
following : 

k = k,,, k,,  or k,,, k,, - k,,- k,, = 0,  

If 

If 

Here k, kip and k,, form a resonant triad and cg is the group velocity: cga = aw,/ak. 
The summation over i = 1 , 2  reflects the existence of sum and difference triads. Note 
that J,  has been simplified. 
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5. Discretization 
The kinetic equation (20) is not in general solvable analytically. Whether it can 

be solved depends on the solutions to the resonance conditions. Davidson (1972, 
pp. 258-260) gives a solution for the one-dimensional case in which each wave only 
participates in exactly one triad. Simmons (1969) and McGoldrick (1970) have treated 
the case of just one resonant triad. I do not attempt to give an analytical solution 
here ; I present efficient methods to determine the value of the nonlinear interactions 
for a given spectrum. In the next section the spectrum will be integrated using these 
met hods. 

The methods presented here are efficient because they use natural grids, to be 
introduced below, and the symmetries of the integrand shown in $4. These methods 
are more accurate than previous ones. Also, they do not require recalculation of the 
same factors. At the same accuracy the present methods are estimated to be more 
than an order of magnitude quicker than the straightforward ones: a factor 3 for 
doing calculations once per triad, using (35), a factor 2 for not treating sum and 
difference triads separately, and at least a factor 2 for higher accuracy at the same 
bandwidth. 

The fact that the net transfer in a band Am is zero can be used in a numerical model 
to guarantee energy conservation for the whole spectrum. This is done by choosing 
gridpoints on the wavenumber axis as follows. The triad axis is discretized arbitrarily 
into a set m, with bins Am,. The gridpoints and bins in wavenumber space I choose 
as 

where i ranges over the three members of a triad. Equation (37) implies that all 
gridpoints exactly resonate with two other points. Within such a triad the net transfer 
is zero by (32). The transfer being zero per triad helps to guarantee conservation of 
total energy in a numerical model. I call grids given by (37) natural, because they 
follow directly from the structure of the resonant triads. 

In  this study two natural grids are used. The first one has the sets K(&k,), K(&ko) 
and K(Ek , )  as gridpoints. The boundaries of the bins are given by K(&k,), K ( g k , )  
and K(k,). This grid is shown in figure 3. On this grid no mixing occurs between 
the independent sets found in $3. This grid will be called the non-mixing grid. 
With 33 triads the total energy is conserved with an accuracy (AEtot/Etot)/ 
(dG+(k) /G+(k) )  x 

The second grid is based on bands Am, of constant width (under the mapping 
m ( k )  = - c1 log (k8 /c2 ) ) .  A complexity that arises here is that, because m ( k )  is 
double-valued for k 2 k,, there are two grids for k 2 k,. They consist of wavenumbers 
that are respectively the intermediate and the largest members of triads, a k ,  and 
k, grid (note that for the non-mixing grid these two coalesce). What is being done 
here is that the two contributions to the transfer in (35) are each calculated on a 
separate grid. The two have to be added to determine the total transfer. The addition 
is performed on the k, grid after linearly interpolating the transfers on the k,  grid 
to the k ,  grid. Before the next integration step can be performed the spectrum G, 
has to be interpolated back to the k, grid. This is done by taking G+(k,), for k, in 
the band around k,. A t  k ,  a peak arises in the transfer (see Valenzuela & Laing 1972 
or $6), therefore the interpolation in the neighbourhood of k, has to be performed 
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with more care. In the k ,  band containing k, analytical considerations on the shape 
of the transfer peak lead me to take 

Here k,+, is the grid point on the k ,  band next to the band containing k,, is the 
spectral level determined by linear interpolation and ik ,  - A and ?jko + A  are 
respectively the nearest members to ik, on the k, and k, grid. On this second grid 
a loss of accuracy occurs because of the interpolation to and forth. Still, with 35 triads 
the accuracy is given by (AEtot/Etot)/(AG+(k)/G+(k)) x An important difference 
with the first grid is that on this one the sets K are no longer independent. As an 
illustration of this consider the following. The four lowest horizontal bands in figure 3, 
more or less of equal width, can be thought of as generating a wavenumber grid of 
the second type. The highest band of the four contains all sets K ,  thereby mixing 
them all. This mixing will be seen in $6 to have far-reaching consequences. 

For the integration a first-order forward scheme is used. As a check a leapfrog 
scheme has been used; this gave the same results. At the high-wavenumber boundary 
a tail with adjustable power and coefficient has been fitted. The wavenumber interval 
is chosen by keeping in mind that viscosity has not been incorporated in the present 
theory. The expressions only make sense, therefore, when viscous damping acts on 
the same or a larger timescale as the nonlinear interactions (assuming the strength 
of the coupling of the two effects to be roughly equal to the product of the strength 
of the two effects). I have chosen k,,, x 1300 m-l in accordance with Valenzuela & 
Laing (1972) who take 

k,,, = (3-4) (g/2T)1 x 1100-1500 m-l, 

The timescales of the two effects at  this boundary will be expIicitly compared 
in $6. As the longest wave resonates with the shortest this immediately gives 
Emin x 50 m-l. 

6. Spectral development 
The nonlinear interactions have been calculated for various spectra. Figure 4 shows 

the transfer for a spectrum measured by Liu & Lin (1982) in a wave tank for a 
windspeed of 7 m/s. This result is typical for any smooth spectrum with a peak at  
low wavenumbers. Actually, I have approximated the spectrum of Liu & Lin. An 
explicit description of the spectrum in SI units reads: 

v = -  w ( k )  G+(k)  = ~ Q + ( u ) .  
27c ’ I 
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FIQURE 4. Variance spectrum G+ and transfer aG+/at. The spectrum follows closely the 
measurements of Liu and Lin (1982) for a windspeed of 7 m/s. 

Here (25) gives the relation between G, and the energy E; G- equals zero, #+(v) 
is divided equally over k and - k and the tilde is used to indicate the dependence 
on the frequency v. 

In principle the sign of the transfer at a given wavenumber can be positive or 
negative, depending on the energy level at all members of the triads resonant for this 
wavenumber. However, for any spectrum somewhat like the general tendencies 
are the same. Energy flows away from the peak of the spectrum towards wavenumbers 
larger than k, ; numerically k, = 520.11 m-l. The main transfer is to the region close 
to k,, roughly between 520 and 620 m-l. This is in accordance with the prediction 
at the end of 93. For the transfer the results are indistinguishable for the two grids. 

Nonlinear interactions for this type of spectrum have also been shown by 
Valenzuela & Laing (1972). What is new in figure 4 is that measured spectra are now 
available. The height of the spectrum is important a8 this determines the strength 
of the nonlinear interactions. For the first time a comparison can be made between 
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0.35 

~ 

u* ( 4 s )  k (m-l) Tw (9) TNL (9) 

0.21 200 0.8 0.3 
300 0.6 0.1 
450 0.5 0.06 
540 0.7 0.01 
600 0.8 0.03 
800 m f l  
200 0.91 0.2 
300 0.16 0.06 
450 0.14 0.03 
540 0.14 0.01 
600 0.13 0.03 
800 0.14 0.04 

0.1 0.5 200 
0.03 300 

450 0.04 0.01 
540 0.05 0.005 
600 0.05 0.01 
800 0.05 0.03 

- 
- 

TABLE 2. Comparison of the timescales T, and TNL, respectively for growth due to the wind and 
for nonlinear interactions, as a function of wavenumber for various windspeeds 

the timescale of the growth of the waves due to the wind, the positive source term 
in the energy balance (1) for gravity-capillary waves, and that of the nonlinear 
interactions. I use the method of van Gastel et al. (1985) to determine this timescale. 
In this method viscosity is taken into account, so actually a net source term, which 
is approximated by the sum of 8, and Svisc, is compared to the nonlinear interactions. 
van Gastel et al. use u*, the fr:?tion velocity, to characterize the wind speed, while the 
measurements are for given U .  I use here the rule of thumb u* = $U to relate U and 
u*. Typical timescales T, of S,+Svisc and TNL can be found in table 2. Not all of 
the spectrum used in this paper, i.e. 48 m-l < k < 1300 m-l, is covered by these data, 
but the middle part, where the interesting dynamics occur, is. For this region TNL 
is smaller than T, at every wavenumber for all wind speeds; thus the nonlinear 
interactions have more effect on the energy level of the waves than the wind. Near 
the peak of the nonlinear transfer an order-of-magnitude difference exists between 
the two effects, far from the peak the effects are nearly equal. 

In  choosing the cutoff wavenumber for the calculations it has been assumed that 
throughout the interval the timescale of the viscous damping T, is at least as large 
as TNL, TNL being the timescale of nonlinear interactions defined above (24). T, is equal 
to (4vk2)-', v being the kinematic viscosity (Phillips 1977, p. 52). This condition is 
fulfilled throughout the whole interval for the present case; that is U = 7 m/s. In this 
case for all wavenumbers Tv/TNL 2 3. However, for a realistic spectrum a t  U = 4 m/s 
a new cutoff wavenumber has to be chosen at k = 800 m-l, implying a minimum 
wavenumber of 90 m-l. 

What has not appeared before in the literature is the integration of an energy 
balance including nonlinear interactions. I have done this for the case of gravity- 
capillary 'swell ', that is I have studied the fetch development for realistic initial states 
in case only nonlinear interactions and viscous damping act. Wind, current and 
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breaking are absent in this case. In a follow-up study (van Gastel 1987), these effects 
are included. Thus the equation that has been integrated is 

1 
= - [S,, - 4 vk2 G,], 

ax cg 

where S,, is given by (20) or, equivalently, by (35). 
Figures 5 and 6 show the fetch development of gravity-capillary swell. The 

integration is performed on the mixing grid. Initial spectra were measured by Liu 
t Lin (1982), for windspeeds of 7 and 4 m/s respectively. The spectrum at 4 m/s is 
approximated in a manner similar to that used at 7 m/s (see (39)). It is seen that 
the peak in the transfer at k,, evident in figure 4, does not result in singular behaviour 
of the energy density. For the case of a low wind speed a finite peak appears at k,; 
for the high-wind-speed case the spectrum is almost smooth. This is because at 
low wind speeds the nonlinear interactions are relatively smaller, thus they are more 
thwarted in trying to reach an equilibrium (see the top paragraph on p. 511). 
Indeed, for U = 7 m/s the tail of the spectrum (k = 300-1 100 m-l) has the equilibrium 
shape of (23). 

It is seen that, also in accordance with the predictions of $3, the whole set K(k,) 
is affected by the transfer peak at  k,. There are dips for k E K(k,), k < k, and peaks 
for k ~ K ( k , ) ,  k 3 k,. The wavenumbers of these peaks all follow from figure 2. The 
first four are given by 

k = 520,646,745,830 m-l. (41 1 

Translated into the appearance of the surface, these peaks mean that there are 
preferred wavelengths. Some wavelengths will be seen more often to dominate the 
appearance of the surface than others. The four most preferred wavelengths are 

h = 1.2,0.97,0.84,0.76 cm. (42) 

Peaks in the spectrum as predicted by this theory have also been encountered 
during measurements with a wave follower in the ocean during the TOWARD 

experiment (Shemdin 1986). Only a rough comparison has been made so far, but the 
locations of the peaks seem to coincide. One possible reason that they were 
encountered in this experiment but not in others is that spectra are usually measured 
as a function of frequency. In the ocean short waves ride on long waves. This means 
that one never measures the intrinsic frequency of the short waves, but always the 
apparent. Thus all features of the spectrum as a function of wavenumber are smeared 
out. In the last few years attempts have been made to convert from apparent to 
intrinsic frequency (Stolte 1984; Atakturk & Katsaros 1983). However, these were 
still pretty rough. Shemdin’s method based on a matrix conversion seems to be more 
sophisticated. 

From figures 5 and 6 it  can be deduced that the viscous decay of the energy level 
around the main peak of the spectrum is not much faster when nonlinear interactions 
are taken into account. For U = 4 m/s, for instance, about 0.2 times the energy is 
left at the peak after 3.6 m of fetch in the present model. This is in agreement with 
the viscous decay factor exp(-4vk2x/cg). This behaviour is in contrast with the 
prediction of Krasil’nikov & Pavlov (1973) ; they expect that nonlinear interactions 
would enhance the decay significantly. The cause of this difference is that they did 
not anticipate the change in the shape of the spectrum, which greatly reduces the 
nonlinear interactions for k < $k0. 
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100 200 300 400 500 600 700 800 900 lo00 1100 I200 1300 
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FIQURE 5. The development with fetch of (a) the variance spectrum a+ and ( b )  the third cumulant 
,a under the influence of nonlinear interactions and viscous damping. The initial state is an 
approximation of the spectrum measured by Liu & Lin (1982) for a windspeed of 4 m/s. -, 
x = O m ;  ..... , 0.3 m; ----, 1.4 m;  -.--, 3.6 m. 

In figure 7 (a) spectra are shown at 0.5 m of fetch, starting with an initial spectrum 
typical of a wind speed of 4 m/s. The calculations are done on the mixing grid, once 
with 35 and once with 69 triads. It is seen that the results depend on grid size, both 
in height of the dips and peaks and in shape of the spectrum around $to. This 
dependence is found on all mixing grids, because the amount of mixing implicitly 
present in the model depends on grid size. Thus truly different equations are being 
solved when the number of bins is changed. 

The only grid that does not show this dependence is the one on which no mixing 
takesplace. This grid, constructedin $3, consistsof sets K(ko),  ~ O E  (&,, k,]. Figure 7 (b )  
shows spectra, computed on this non-mixing grid, for the same situation as in 
figure 7(a) .  Results for grids consisting of 33 and 66 triads are shown. The results 
are practically independent of grid size. 
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FIQURE 6. As figure 5(a), but the initial state measured at U = 7 m/s. 
- ,x=Om; * a * * *  , 0.4 m;  ----, 0.9 m; ---, 1.3 m. 
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FIGURE 7. Spectra of a fetch of 0.5 m, developed from the initial state as in figure 5 under in- 
fluence of nonlinear interactions and viscous damping. The calculations are performed : 
(a) on the mixing grid, consisting of ...... 35 triads; ----, 69 triads; (b) on the non-mixing grid, 
consisting of * * . . -, 33 triads; ----, 66 triads. It is only on the non-mixing grid that the results 
are independent of grid size. 
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Comparisons of the two types of grids at  about 35 triads show that the non-mixing 
grid has higher peaks and dips, as might be supposed. For about 70 triads this is not 
yet apparent a t  a fetch of 0.5m, but it becomes so at larger fetches. Though 
mathematically the non-mixing grid is undoubtedly the best to solve (1)  these high 
peaks are disturbing. Further, one may question whether this equation is a good 
description of nature. In  nature diffusive terms, which cause mixing of the sets, are 
always present, for instance the refraction caused by the orbital motion of gravity 
waves. Even a very small-amplitude wave causes a lot of mixing: a wave of A = 1 m 
and ka = k0.003 gives the same spectra as the mixing grid with 35 triads. For this 
reason I expect a mixing grid with about 35 triads to give a more realistic description 
than a non-mixing grid. 

In figure 5 not only is the development of the second cumulant, i.e. the spectrum 
G,, shown but also of the ratio of third cumulant to second, ,GIG,. Only the 
stationary components of the third cumulant are considered. For k 2 k, there are 
two; the largest is shown. The magnitudes of these cumulants have to remain of the 
same order, or decrease, for the weakly nonlinear theory to be valid. These conditions 
are seen to hold. In $2 it  was mentioned that when only nonlinear interactions work 
the third cumulant goes to a constant. Figure 5 shows that when a linear term is 
added, in this case viscous damping, a kind of balance sets in where the third cumulant 
has small, but finite, values. In a follow-up study (van Gastel 1987) it is shown that 
other linear terms (wind input and linear dissipation) have the same effect. 

7. Conclusions 
In this paper the integration of a weakly nonlinear energy balance for gravity- 

capillary waves is made feasible. Results, and an interpretation, are given for the 
development of a one-dimensional spectrum of gravity-capillary waves under the 
influence of nonlinear interactions and a linear term, in this case viscous damping. 

Concerns about the violation by nonlinear interactions of near Gaussianity appear 
to be unfounded. Davidson (1972) has shown that for both three- and four-wave 
interactions the third cumulant goes to a constant. Linear terms do not destroy this 
process (see also van Gastel 1987). The results presented in this paper clearly show 
that nonlinear terms are required to give an adequate description of the development 
of a gravity-capillary wave spectrum. The timescale of the nonlinear interactions is 
shorter than that of growth by wind. A barrier to including nonlinear interactions 
in an energy balance used to be the time-consuming algorithms (Valenzuela & Laing 
1972). This barrier has been lowered : the present method for calculating nonlinear 
transfers is estimated to be an order of magnitude quicker than preceding ones. 
Previous calculations (Valenzuela & Laing 1972) showed a singularity in the nonlinear 
transfer. Here, however, it is shown that this does not result in a singularity of the 
energy spectrum. The singular behaviour of the transfer, at one wavenumber, does 
generate finite peaks and dips at many related wavenumbers. A simple algorithm is 
given to calculate these wavenumbers. The height of the peaks and especially the dips 
is very sensitive to the presence of a diffusive term, refraction for instance. Already 
for the small refraction such as caused by the oribital velocity of an extremely 
low-amplitude gravity wave (ka  x 3 lo-,) the dips disappear and the peaks have a 
relative height of less than four. The calculations presented in this paper show that 
one needs to be concerned about grid size affecting the results. The nonlinear 
interactions link together the energy levels of sets of wavenumbers. These sets, of 
which there are infinitely many, do not interact among each other. There is one type 
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of grid that maintains this independence. It is only on this grid that the results 
do not depend on grid size. Any other grid implicitly mixes the sets. As on these grids 
the amount of mixing depends on grid size the spectral energy depends on grid size. 
When a diffusive term is present this mixes the sets and hardly any dependence on 
grid remains. 

A new concept that I introduced is multiwave space. This is a concept comparable 
with phase space. It enables one to take a new viewpoint to look at nonlinear 
interactions. From this viewpoint a natural way is discovered to go from a continuous 
to a discrete representation. From this point it is also easy to see how the energy goes 
through the spectrum and to estimate the size of the transfer. 

This work was supported by the Netherlands Organisation for the Advancement 
of Pure Research (ZWO). I would like to thank Gerbrand Komen and Wim Verkleij 
for helpful discussions and Henk Tennekes for comments on an early version of this 
paper. I also thank Frank Henyey for the clue to the argument on near-Gaussianity. 

Appendix A 
THEOREM. If 

then 

Proof. I use a dimensionless notation in which w = ( k +  ak3)i and iko = (ia);. I shall 
prove that if (A I ) ,  (A 2) and (A 4) are fulfilled while (A 5 )  is not then (A 3) cannot 
be fulfilled. In this case 

Inserting 

gives 
k ,  = $ + A , ,  k ,  = $ + A , ,  A, > 0, A ,  2 0 

As the right-hand side of (A 7) is always negative (A 3) cannot be fulfilled. 

Appendix B 

K(ko) = 6 {ki(ko))  
t-1 

A = (iko, kol 

THEOREM 1 .  Let La, k,EA. Then K(k,) n K(k,) = 0 unless k,  = k,. 
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THEOREM 2. 

For the proofs of both theorems the set K(k,),  drawn for k 3 k, in figure 2 ,  is 
considered. The first proof also makes use of the following lemma. 

LEMMA. If k,, k,  € A  then k ,  E K(kb) c> k, = k,. 
Proof of lemma. For any Ic, E A kl (k , )  n A = 0 (see Appendix A). By construction 

it can be shown that for 

i > 1 max{m(ki(k,))} > max{m(k"-l(k,))}. 

Thus ' m  can only grow ' for ko E A. Because for k > ik ,  max {m(k)} is a monotonously 
increasing function of k this completes the proof. 

Proof of theorem 1. Assume 3k: k E K ( k , )  fl K(kb).  Then by constructing K(k) one 
will find both k ,  and k,, thus k,EK(kb) .  Then k ,  = k ,  by the lemma. 

Proof of theorem 2. Take any k E  [kmin, k,,,] for k resp. smaller or larger than ik,, 
find the smallest r for which there exists a kr(k,) 3 k ,  resp. kr(ko) < k (possible because 
K(k,) is discrete). Because the construction of K consists of horizontal and vertical 
lines and because triads with two members smaller than i k ,  do not exist (see 
Appendix A) 3koE A :  kE{kr (ko) } .  
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